

NC STATE UNIVERSITY

Indicator Bacteria Sequestration in Stormwater Wetlands

Jon Hathaway, PhD, PE Bill Hunt, PhD, PE

Bacteria Pollution

USEPA – National Water Quality Inventory (2006)

 12% of surveyed streams and rivers were impacted by indicator bacteria

Public health risk from pathogens

- Recreation, Shellfish
- Economic impact

Indicator bacteria

- Fecal coliform
- E. coli
- Enterococci

Threat From Pathogens

Stormwater Wetlands

Pros

- UV Exposure?
- Sedimentation
- Predation

Cons

- Persistence in Soils?
- Wildlife
- Resuspension

Project Locations

Monitoring

- Scratching the surface
- Grab samples at inlet and outlet of each BMP
 - Charlotte: Fecal Coliform and *E. coli*
 - Wilmington: *E. coli* and enterococci
- Charlotte: 5 -19 samples
 - 9 BMPs monitored
- Wilmington: 15-20 samples
 - 6 BMPs monitored

Wetland 1 - Charlotte

Wetland 2 - Charlotte

Wetland 1 - Wilmington

Restore the Earth and Inspire Ecological Stewardship

Wetland 2 - Wilmington

BMP Efficiency

ВМР Туре	Efficiency Fecal Coliform (%)	Efficiency E. coli (%)	Efficiency Enterococci (%)
Wetland 1 - Charlotte	98*	96*	-
Wetland 2 - Charlotte 56		33	-
Wetland 1 – Wilmington	-	1	69
Wetland 2 - Wilmington	-	-18	41

* = statistically significant

(Hathaway et al. (2009) Journal of Environmental Engineering)

(Hathaway and Hunt (2012) Journal of Irrigation and Drainage Engineering)

Restore the Earth and Inspire Ecological Stewardship

	E. coli Concentrations			
ВМР Туре	Geometric Mean Influent	Geometric Mean Effluent	% of samples under 126 counts/100 ml	
Wetland 1 - Charlotte	2400	106	33	
Wetland 2 - Charlotte	1295	864	10	
Wetland 1 – Wilmington	834	826	28	
Wetland 2 - Wilmington	425	503	28	

Restore the Earth and Inspire Ecological Stewardship

BMP Efficiency - Charlotte

Take Home Points – Stormwater Controls

- Wetland performance
 - Poor sunlight exposure
 - Production within system
- Some stormwater controls may be sources of bacteria
 - Presence of animal activity
 - Wet, nutrient and organic rich environments
- Can data be extrapolated between regions?
 - Potential differences in particle-association
 - Sands vs. clays
 - Transport and/or resuspension
- Differences in performance for indicators?

City of Lenoir and Caldwell County

- Developing City and County
 - Phase II
- Demonstration Projects
- Google!

Design Summary

- Excavation Depth: 2.1 2.7 m
- Surface area: 2.1 acres
- Normal Pool Depth: 0-15 cm
- Storage depth: 30-38 cm
- Storage for > 90% of the 2.5cm storm
- Site will hold water But topsoil is necessary to support plant growth

Winter Aerial

Restore the Earth and Inspire Ecological Stewardship

August 2009

Research

Lenoir Wetland Monitoring

Grab samples

- Base flow and during events
- Multiple points
- Soil bacteria sampling
 - Multiple locations
 - Multiple "zones"

Restore the Earth and Inspire Ecological Stewardship

Þ

D

Take Home Points

- Storm flow clearly has higher concentrations
- Baseline microbe concentration appears to be reached
- No consistent correlations with TSS observed
- Relatively low soil-microbe concentrations
 - No difference noted among wetland regions

Dye Branch Wetlands

Restore the Earth and Inspire Ecological Stewardship

Results

Results

Pollutant	Inlet to Cell 1 Outlet	Cell 1 Outlet to Cell 2 Outlet	Cell 2 Outlet to Cell 3 Outlet
TSS	0.84 ¹	0.11	0.18
TP	0.62	0.03	0.11
TN	0.52	0.12	0.03
ON	0.32	0.07	-0.02
TAN	0.85	0.26	0.13
TKN	0.44	0.09	-0.01
NO ₂ -NO ₃	0.67	0.47	0.12
Turbidity	0.62	0.09	0.24

1: Significant differences are highlighted

Restore the Earth and Inspire Ecological Stewardship

Organic Nitrogen - EMC

Location	ON Concentration (mg/L)	
Inlet	1.0	
Outlet Cell 1	0.68	
Outlet Cell 2	0.63	
Outlet Cell 3	0.64	

Restore the Earth and Inspire Ecological Stewardship

Looking Forward

- Revision of EPA standards for microbes
 - Not much detail here
- Narrow down on performance
 - What are reasonable expectations for BMPs?
- What factors explain variability in data?
- How can we link water quality requirements/BMP performance to public health?

Going Forward

Stacked Benefits

- Water quality
- Quantity control
- Habitat
- Aesthetics
- Carbon sequestration
- Ecosystem services
- Urban heat island

End of Pipe Solutions?

Regenerative Stormwater Conveyance

Regenerative Stormwater Conveyance

Regenerative Stormwater Conveyance / Biofiltration Conveyance

- Retrofit "Batting Cleanup"
- Fixing maintenance issue
 - Integrate maintenance and WQ
- Ecological value
- Aesthetics
- Volume Reduction / Peak Flow Mitigation / WQ ?

References

- Hathaway, W.F. Hunt, S. Jadlocki. (2009). "Indicator bacteria removal in stormwater best management practices in Charlotte, North Carolina." *Journal of Environmental Engineering*, 135(12): 1275-1285.
- Hathaway, J.M., W.F. Hunt. (2012). "Indicator bacteria performance of stormwater control measures in Wilmington, NC." *Journal of Irrigation and Drainage Engineering*, 138(2): 185-197.
- Hathaway, J.M., W.F. Hunt, A.K. Graves, K.L. Bass, and A. Caldwell. (2011). "Exploring fecal indicator bacteria in a constructed stormwater wetland." *Water Science and Technology.* 63(11): 2707-2712.
- Hathaway, J.M., and W.F. Hunt. (2010). "An evaluation of wetlands in series in Piedmont, North Carolina." *Journal of Environmental Engineering*. 136(1): 140-146.

NCSU Resources

www.bae.ncsu.edu/stormwater

Workshops

Design and maintenance

Publications

- Journal citations
- Extension publications
- Additional websites
 - Specific to each research area

Questions?

- Jon Hathaway, PhD, PE
 - Water Resources Engineer, Biohabitats, Inc
 - jhathaway@biohabitats.com
 - (919) 518 0311